Course code:		Allied - IA	T/P	С	H/W
22BMAA1	Ī	ANCILLARY MATHEMATICS - I	Т	3	3
Objectives	To lear	rn the basic concepts and problem solving in diffe	rential	equati	ions
	➢ To exp	plore trigonometry as a tool in solving problems.			
Unit -I	Matrices	- Characteristic Equation and Cayley - Hamilton	on The	orem	(Proof
	not inclu	ded) - Finding the inverse of a matrix using (Cayley	– Ha	imilton
	Theorem	 Eigen values and Eigen vectors. 			
Unit-II	Equations	s of the first order but of Higher Degree - Equ	ations	solva	ble for
dy/dx – Equations solvable y, x – Clairaut's form – Linear equation					
	constant	coefficients - Finding the complementary func	tion ar	nd par	rticular
	-	f the type e ^{ax} cosax sinax.			
Unit- III		ial Calculus – Successive Differentiation – n th der			
		(Derivation not needed) problems - Leibnitz f			
		e of a product (proof not needed) simple problem	•		rvature
		us of Curvature in Cartesian coordinates only – pro			
Unit- IV	U	Calculus – Integration by Parts – Bernoulli's f	formula	a – D)efinite
	-	– Properties – problems.			
Unit- V	-	hetry : Expression for sinn θ , cosn θ and tann θ , sin ^t			-
	U	er) Expansion of sin θ , cos θ , tan θ in powers of θ (e	only pr	oblem	is in all
	the above)			
Reference and			D	I (D	• 1)
•	· •	gapandi Isaac, A. (2002). <i>Ancillary Mathematics</i> Gamma Publishing House	Paper	1 (<i>R</i> e	vised).
•		e	C1		a 1. 1
Arumugam, S Publication		angapandiIssac, A. (2003). Modern Algebra.	Cheni	nai:	Scitech
•		anickavachagomPillay, T. K. (2006). <i>Calcu</i> ers & Publishers) Pvt. Ltd.	lus. (Volur	ne I).
•		anickavachagomPillay, T. K. (2014). <i>Calcul</i> ers & Publishers) Pvt. Ltd.	us. (Volum	ne II).
Narayanan, S.	., & Mani	ckavachagomPillay, T. K. (2015). <i>Differential</i> anathan (Publishers & Printers) Pvt. Ltd.	Equati	ions d	and its
Outcomes	Students	will be able to			
	> Devel	op the ability of solving the integrals			
	Under	stand the applications of differentiation			

ALLIED COURSES FOR OTHER DEPARTMENT STUDENTS

Course Code	Allied - IA	T/P	С	H/W
22BMAAP1	Practical	P	2	2
	ANCILLARY MATHEMATICS - I			
Q1. Find the rank of a 3	into 3 matrix.			
Q2. Finding inverse of a	given matrix using Cayley- Hamilton Theo	orem.		
Q3. Finding compleme	ntary functions and particular integral o	of given	diffe	rential
equations with rig	the hand side consisting of exponential	, trigon	ometr	y and
algebraic function a	nd its combinations.	-		-
Q4. Finding nth derivati	ve of a product of functions using Leibnitz	formula.		
Q5. Finding Integration	by parts two or more times using Bernoulli	s formu	la.	
Q6. Express $\sin^m \theta \cos^n \theta$	in terms of either $\sin\theta$ or $\cos\theta$.			

Course code:		Allied - IB	T/P	С	H/W	
22BMAA2		ANCILLARY MATHEMATICS - II	Т	3	3	
Objectives	To lease	n vector differentiation and vector integration				
	To sol	ve differential equations.				
Unit -I	Vector C	alculus - Vector Differentiation - Gradient - Div	vergenc	e –	Curl –	
	Properties	– Results.				
Unit-II	Linear eq	uations with constant coefficients with Right hand	d side o	of th	e from	
	e ^{ax} v whe	re v is any function of $x - x^m$ (a power of x) n	n being	g a p	ositive	
	integer -	- Linear equations with variable coefficient	s (Ho	moge	eneous	
	Differenti	al Equations only).				
Unit -III	Fourier S	eries – Definition – Fourier Series Expansion of I	Periodic	: Fur	nctions	
	with Peri	od 2π – Even and Odd functions – Half range	Fourie	er Se	eries –	
	Problems					
Unit- IV	Interpolat	ion – Newton's Interpolation formula – C	entral	Diff	erence	
	Interpolat	ion formulae – Lagrange's interpolation formulae.				
Unit- V	Correlatio	n – Rank Correlation – Regression lines and Regre	ssion c	oeffi	cients.	
	., & Thang	apandi Issac, A. (2006). <i>Analytical Geometry of</i> Palayamkottai: New Gamma Publishing House.	Three I	Dime	ensions	
Arumugam, S Publishing		gapandi Issac, A. (2007). Statistics. Palayamkot	tai: Ne	ew C	bamma	
U		ndi Issac, A., & Somasundaram, A. (2013). <i>Numer</i> layamkottai: New Gamma Publishing House.	rical Ar	nalys	is with	
Narayanan, S., Printers & I		avachagomPillay, T. K. (2014). Calculus (Vol. II	I). S.V	iswa	nathan	
	Narayanan, S., & ManicavachagomPillay, T. K. (2015). <i>Differential Equations and Applications</i> . S.Viswanathan (Printers and Publishers) Pvt. Ltd.					
Outcomes	Students	will be able to				
	> Under	stand the need and importance of statistical analysi	s in the	ir ma	ijor	
	subjec	ts.				
	Acqui	re the knowledge of fourier series.				

Cours	e Code	Allied - IB	T/P	С	H/W
22BM	AAP2	Practical	Р	2	2
	A	ANCILLARY MATHEMATICS - I	[
Q1.	Finding Gradient of	a given scalar Point function.			
Q2.	Finding Divergence	of a given vector Point function.			
Q3.	Finding Curl of a give	ven vector Point function.			
Q4.	Solving a given hon	nogeneous differential equation.			
Q5.	Finding Fourier series	es expansions for a given periodic fun	ctions.		
Q6.	Finding Half range l	Fourier series expansions for a given p	periodic funct	ions.	
Q7.	Finding interpolation	n using Newton's interpolation formu	la for a given	data.	
Q8.	Finding interpolation	on using Central difference interpola	tion formula	for a	given
	data.				
Q9.	Finding Rank correl	ation for a given data.			
Q10.	Finding regression c	co- efficient and Regression lines for a	i given data.		

Course code	:	Allied - IIA	T/P	C	H/W
22BMAA3		ANCILLARY MATHEMATICS - III	Т	3	3
Objectives	To learn	the partial differential equations			
	To enrie	the knowledge in multiple integrals.			
Unit -I	Partial Dif	Ferential Equations – Formation of Partial Diffe	erential	Equat	ions by
		arbitrary constants and arbitrary functions -	Complet	e, Par	ticular,
		d General integral.			
Unit-II	Solving La	grange's linear equation $Pp + Qq = R$ - Solution	ition of	equat	ions of
	Standard ty	ppes f(p, q) = 0, z = px + qy + f(p, q), f(z, p, q) = 0	$= 0, f_1(x, x)$, p) =	$f_2(y,q).$
Unit III	Laplace T	ransform – Definition – Laplace transform	of sor	ne St	tandard
	Functions	-Problems - Inverse Laplace Transform - S	Standard	form	nulae –
	problems.				
Unit IV		Differentiation - Derivatives using Newton's			
		Derivatives using Newton's Backward D			
		s using Newton's Central difference formula -	Maxima	and I	Minima
		polating polynomial.			
Unit V		amma functions – Relations between them – E	valuatio	n of n	nultiple
		sing Beta and Gamma functions.			
Reference and		-			
•		apandi Issac, A., & Somasundara, A. (2013).		ical A	Inalysis
with Pr	ogramming	in C. Palayamkottai: New Gamma Publishing I	House.		
Arumugam	, S., & Thar	gapandi Issac, A. (2014). Differential Equation	ons and .	Applic	cations.
		V Gamma Publishing House.		11	
		-	1 II) C	Vian	anothan
		cavachagomPillay, T. K. (2014). <i>Calculus</i> . (Vo	n. 11). S.	VISWa	inathan
(Printer		ers) Pvt. Ltd.			
Outcomes		will be able to			
		stand a way to solve problems quickly and eas	•		
	*	re knowledge to transform ordinary differen	ntial equ	ation	s in to
	algebi	aic equations.			

Cours	se Code	Allied - IIA	T/P	С	H/W
22BM	IAAP3	Practical	P	2	2
	ANCI	LLARY MATHEMATICS - III			
Q1.	Solving differential equa	tions of the form $Pp + Qq = R$, using Lagr	ange's	meth	od.
Q2.	Solving differential equa	tions using Charpit's method.			
Q3.	Solving differential equa	tions using Laplace transform.			
Q4.	Finding integration using	Beta and Gamma functions.			
Q5.	Finding multiple integral	s of a given function.			

Course code	:	Allied - IIB	T/P	С	H/W
22BMAA4		OPTIMIZATION TECHNIQUES	Т	3	3
Objectives	To introd	uce the fundamental concepts of LPP			
	➤ To Study	the concept of Simplex method and Transportation prob	olem.		
Unit -I	Origin and	Development of O.R Definition of O.R Line	ear Pro	gram	ning –
	Mathematica	l formulation – Graphical method – Problems.			
Unit-II	Simplex meth	nod using Slack and Surplus variables.			
Unit- III	Transportatio	on Problem – Definition – Finding initial basic feasible s	olution	by N	orth –
	West Corner	rule - Least Cost method - Vogel's Approximation met	hod.		
Unit -IV	Assignment	problem - Definition - Finding optimal solution b	y usin	g Hu	ngarian
	method.				
Unit -V	Sequencing 1	Problem - Processing n jobs through two machines -	- Proce	essing	n jobs
	through K ma	achines – Problems.			
Textbook					
Swarup, K.,	1	& Mohan, M. (2008). <i>Operations Research</i> (14 th Ed.). ons Publishers.	New	Delhi:	Sultan
Reference Bo					
Gupta, P. K.,	& Hira, D.S.	(2004). Operations Research (2 nd edition). New Delhi: S	.Chanc	& Co).
Outcomes	Students	will be able to			
	> Develo	op the skills in decision making			
		the students in solving real time problems.			

Cours	se Code Allied - IIB		T/P	C	H/W
22BM	IAAP4 Practical		Р	2	2
	OPTIMIZATION TECHNIQUES				•
Q1.	Solving a given linear programming problem using graphi	cal me	thod.		
Q2.	Solving a given linear programming problem using Simple	ex metl	hod.		
Q3.	Finding OBFS for a given transportation problem.				
	Finding OBFS for a given assignment problem.				
~	Finding the Sequence of jobs using the given data.				

Instructions for all four practical

Tutor's Guide

- All the Questions can be solved by applying the concepts through the pen and paper mode. (Solving through computer is not necessary for these papers, but if students are interested then they can do on their own).
- Practice at least three problems for all questions in the observation notebook.
- Write exactly one problem for all questions from the observation notebook with your own choice from the three.

Guide to write the record notebook

- For all Questions write the algorithm (if any) of the method used, graphs (if any) in the right hand side page of the record notebook; solution of particular problem in the left hand side page of the record notebook.
- Write the objective of the problem first, then write the basic concepts involved in that problem, then write the algorithm used, as said in the previous point, finally write the solution as result.

Course code		Allied - IA	T/P	С	H/W
22BMAA5	-	STATISTICS – I	Т	3	3
Objectives	To extend	and formalize knowledge of the theory of probability.	I		-L
	To introdu	uce the notation of regression and time series analysis.			
Unit -I	Central Tend	lencies - Introduction - Arithmetic Mean - Partition	n Value	es – N	Mode –
	Geometric M	ean and Harmonic Mean – Measures of Dispersion.			
Unit-II	Moments - S	kewness and Kurtosis – Curve fitting – Principle of leas	st squar	es.	
Unit- III	Correlation -	- Rank correlation Regression - Correlation Coeffic	ient fo	r a B	ivariate
	Frequency D	stribution.			
Unit- IV	Interpolation	- Finite Differences - Newton's Formula - Lag	grange's	For	mula –
	Attributes – 0	Consistency of Data – Independence and Association of	Data.		
Unit- V	Index Numb	ers - Consumer Price Index Numbers - Analysis of	Time s	eries	– Time
	series – Com	ponents of a Time series – Measurement of Trends.			
Textbook					
Arumugam, House.	S., & Thanga	pandiIssac, A. (2015). Statistics. Palayamkottai: New	Gamm	na Pul	olishing
Reference B	ooks				
-	& Kapoor, V Sons Pvt. Ltd	. K. (2002). Fundamentals of Mathematical Statistics	. New	Delhi:	Sultan
	I., & Bagavat y Pvt. Ltd.	hi. (2007). Statistics: Theory and Practice. New 1	Delhi:	S.Cha	nd and
Outcomes	Students	will be able to			
	> Under	stand Moments, Skewness and Kurtosis.			
	> Calcul	ate the correlation coefficient for the given data.			
	> Comp	ute Rank correlation for the given data.			

ALLIED COURSES FOR MATHEMATICS DEPARTMENT STUDENTS

Course Coo	de:			A	Allied	- IA			T/P		С	H/W		
22BMAAP	5				Prac	tical			Р	2				
						STICS -				·		•		
deter i. 1 ii. 1 iii. 1 iv. 1 v. 1 v. 1 vi. 1	rmine: The me The me The mo The wa The per	ean wa edian w odal wa ge lim rcentag	ges vages ages its for 50 ges of wo	0% of t orkers v	he ea who e who e	urners earned b earned n	etwee	en Rs. than Rs	n a certa 75 and R s. 150 pe 100 per	ts. 125 r week,				
Weekly Wages (Rs.))-40	40-60	60-80	8	0- 10 00 12	0-	120- 140	140- 160	· 160		80- 200		
No. of Employe	es	8	12	20	3	0 4	0	35	18	7		5		
Marks No. of Students	0-4 10	4-8 12	8-12 18	12-		14-18 5		-20 3	20-25 4	25 an	d ov 6	er		
(ii) N (iii) 3. Find	Numbe Numbe the se	r of stu er of st cond, 1	ace find t	ho sect who sect l fourth the mea	ured 1 cured	marks m marks t ral mon of skew	etwe nents	en 10 of the	and 15 frequenc nd measu .0- 13	•	irtos 14			
Frequency	,													
4. In ca the f	alculati Tollowi	ng rest	moment ults are c	obtaine	d:	ency dis			ased on 1	10 00 obse		5 ions,		
But		n it wa	ariance = s found t atral mor	that on	e obs				= 4 .d as 21. (Obtain t	the c	orrect		
	-	_	-						Vare definow that	-	elati	on		

coefficient ρ between U and V is given by $\rho^2 = 1 - \frac{4\sigma_1^2 \sigma_2^2}{4\sigma_1^2 \sigma_2^2 + (\sigma_1^2 - \sigma_2^2) \sin^2 2\alpha}$, where σ_1^2 and σ_2^2 are variances of X_1 and X_2 respectively.

6. If U = aX + bY and V = bX - aY, show that U and V are uncorrelated if $\frac{ab}{a^2 - b^2} = \frac{\rho \sigma_X \sigma_Y}{\sigma_X^2 - \sigma_Y^2}$, where ρ is the correlation co-efficient of X and Y. Show further that in this case

 $\sigma_U^2 + \sigma_V^2 = (a^2 + b^2)(\sigma_X^2 + \sigma_Y^2) \text{ and } \sigma_U \sigma_V = (a^2 + b^2)\sigma_X \sigma_Y \sqrt{1 - \rho^2}.$

- 7. The coefficient of rank correlation between the marks obtained by 10 students in Mathematics and Statistics was found to be 0.5. It was discovered that the difference in ranks in two subjects obtained by one student was wrongly taken as 3 instead of 7. Find the correct coefficient of rank correlation.
- 8. If d_i be the difference in the ranks of the ith individual in two different characteristics then show that the maximum value of $\sum_{i=1}^{n} d_i^2$ is $\frac{1}{3}(n^3 n)$. Hence or otherwise, show that rank correlation coefficient lies between -1 and 1.
- 9. Twenty five pairs of values of variants X and Y led to the following results: N = 25, $\Sigma X = 127$, $\Sigma Y = 100$, $\Sigma X^2 = 760$, $\Sigma Y^2 = 449$ and $\Sigma XY = 500$. A subsequent scrutiny showed that two pairs of values were copied down as (8, 14) and (8, 6) instead of (8, 12) and (6, 8),
 - i. Obtain the correct value of the correlation coefficient.
 - ii. Hence or otherwise, find the correct question of the two lines of regression.
 - iii. Find the angle between the regression lines.
- 10. In a university examination, which was indeed very tough, 50% at least failed in Statistics, 75% at least in Topology, 82% at least in Functional Analysis and 96% at least in Measure theory. How many at least failed in all the four?
- 11. Given that $(A)=(B)=(C)=\frac{1}{2}N=50$ and (AB)=30, (AC)=25, find the limits within which (BC) will lie.
- 12. Prove that if *n* is an integer, then $(x\Delta)^{(n)}u_x = (x + n 1)^{(n)}\Delta^n u_x$.

Course code		Allied - IB	T/P	С	H/W
22BMAA6		STATISTICS – II	Т	3	3
Objectives		y the concepts of random variable and some spec			
	> To incu	alcate the concepts of the sampling distribution	on and	l hyp	othesis
	testing.				
Unit -I		- Conditional Probability - Random variables -			
		Continuous Random Variable – Mathematical Ex	xpectat	ions –	-
		enerating Function – Characteristic function.			
Unit-II	-	cial Distributions – Binomial Distribution – Poi			
		istribution – Gamma Distribution – Chi-Squ	are Di	stribu	tion –
		-Distribution – Snedecor's F- Distribution.			
Unit- III		gnificance of large samples - Sampling - Samp	-		
	Testing of	Hypothesis – Procedure for Testing of Hypothesi	is for la	arge s	amples
	– Tests of S	Significance for large samples.			
Unit- IV		gnificance based on 't' Distribution - Test of Sig		ce bas	sed on
		est for Significance of an Observed sample correl			
Unit -V		on Chi - Square Distribution - Chi - Square		-	
	variance	- Chi - Square Test - To test the Goodness	of fit	– T	est for
	Independen	nce of Attributes - Analysis of Variance -	One	Criter	rion of
	Classificati	on – Two Criteria of Classification.			
Fextbook					
•		apandi Isaac, A. (2015). Statistics. Palayamkottai:	New (Jamm	a
Publishin	0				
Reference Bo					. 11 .
	& Kapoor, V 1and &Sons	V.K. (2002). Fundamentals of Mathematical Stati.	stics. N	lew D	elhi:
Sultan Cr	and & Sons	Pvt. Ltd.			
	•	hi. (2007). Statistics: Theory and Practice. New	Delhi:	S.Cha	nd &
Co. Pvt. I					
Outcomes		will be able to			
	*	ute expectations, moments and correlation coefficien			
	Acqui	re knowledge of discrete and continuous distribution	s and th	eir pro	operties

 STATISTICS - II (a) A perfect cube is thrown a larger number of times in the sets of 8. The occurrence of a 2 or 4 is called a success. In what proportion of the sets would you expect 3 successes. (b) In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls in that time interval tomorrow, (ii) The yall belong to the same variety. (iii) The yall belong to the same variety. (iii) They are all granite stones. 6. In a box there are 4 granite stones. 5 sand stones and 6 bricks of identical	Course Code	Allied - IIB	T/P	С	H/W
 (a) A perfect cube is thrown a larger number of times in the sets of 8. The occurrence of a 2 or 4 is called a success. In what proportion of the sets would you expect 3 successes. (b) In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (v) not more than 5 heads. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. Suppose that a radio tube is inserved into a socket and tests required to terminate th experiment, what is the probability distribution of X? Suppose that the number of telephone calls in that time interval tomorrow,	22BMAAP6	Practical	Р	2	2
 a 2 or 4 is called a success. In what proportion of the sets would you expect 3 successes. (b) In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alree scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that it next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all granite stones. 		STATISTICS – II			
 successes. (b) In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alreat scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-I Assume furthermore that we are testing large supply of such tubes. The testing continuutil the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag,	1. (a) A perfec	t cube is thrown a larger number of times in the sets of 8. T	he occ	urren	ice of
 (b) In eight throws of a die, 5 or 6 is considered a success. Find the mean number of successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrer scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (1-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls in that time interval tomorrow, (i) The operator will receive no calls in that time interval and posed balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is very ball has an equal chance of be included in the three. What is the probability that (i) They are all granite stones. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag	a 2 or 4	is called a success. In what proportion of the sets would you	u expe	ct 3	
 successes and the standard deviation. (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alreat scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that aradio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that time interval. (i) The yall belong to different varieties. (ii) They all belong to different varieties. (iii) They all belong to different varieties. (iii) They all belong to different varieties. (ii) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five bl	successe	s.			
 (c) A man tosses a fair coin 10 times. Find the probability that he will have (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alree scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims under eoties, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-I Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that	(b) In eight	throws of a die, 5 or 6 is considered a success. Find the mea	an nun	nber c	f
 (i) heads on the first five tosses and tails on the next five tosses (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-I Assume furthermore that we are testing large supply of such tubes. The testing continuutil the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all pollog to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three	successe	s and the standard deviation.			
 (ii) heads on tosses 1,3,5,7,9 and tails on tosses 2,4,6,8,10 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bar are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probabilit	(c) A man to	osses a fair coin 10 times. Find the probability that he will h	ave		
 (iii) 5 heads and 5 tails (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alree scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative equals P and the probability that it tests negative equals P and the probability that it tests negative equals P and the probability that it tests positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) The operator will receive no calls in that time interval tomorrow, (iii) The vall belong to different varieties. (ii) They all belong to different varieties. (ii) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They all belong to the same variety. (ii) They all belong to the same colour, and (ii) the balls are of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in w			S		
 (iv) at least 5 heads (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the th	• •				
 (v) not more than 5 heads. 2. If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the condition probability of the target being hit at least twice assuming that at least one hit is alreer scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three be are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the					
 If the probability of hitting a target is 1/5 and if 10 shots are fired, what is the conditio probability of the target being hit at least twice assuming that at least one hit is alrea scored? (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three be are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) twe b					
 probability of the target being hit at least twice assuming that at least one hit is alrea scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and shat Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by					
 scored? 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are					
 3. (a) If the number of claims per policyholder is the sum of the number of claims under each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. <ul< td=""><td>· ·</td><th>of the target being hit at least twice assuming that at least</th><td>one h</td><th>it is a</th><td>lready</td></ul<>	· ·	of the target being hit at least twice assuming that at least	one h	it is a	lready
 each of his two policies, state with reasons how the number of claims per policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (1-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 policyholder, within that group and over that period is distributed, and (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (1-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour, and (iii) the balls are of the same colour, and (iii) the balls are of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins.	. /			ns une	ler
 (b) Calculate to the nearest whole number, the percentage of policyholders within t group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 			-		
 group and over that period who made more household claims than motor claims. 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bar are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 	- ·	• •			
 4. Suppose that a radio tube is inserted into a socket and tested. Assume that the probability that it tests positive equals P and the probability that it tests negative is (1-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 probability that it tests positive equals P and the probability that it tests negative is (I-F Assume furthermore that we are testing large supply of such tubes. The testing continu until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 	• •			clain	1S.
 Assume furthermore that we are testing large supply of such tubes. The testing continuuntil the first positive tube appears. If X is the number of tests required to terminate the experiment, what is the probability distribution of X? Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 	* *				(1 - 5)
 until the first positive tube appears. If X is the number of tests required to terminate th experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 experiment, what is the probability distribution of X? 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 5. Suppose that the number of telephone calls that an operator receives from 9.00 to 9 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (iii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 			to teri	nınat	e the
 hours in a day follows a Poison distribution with mean 3. Find the probability that (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three baare drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 	-	· ·	с (0.05
 (i) The operator will receive no calls in that time interval tomorrow, (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are all of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					0 9.05
 (ii) In the next three days the operator will receive a total of 1 call in that time interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three ba are drawn at random from the bag, that is every ball has an equal chance of be included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are all of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 				that	
 interval. 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and sha Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bas are drawn at random from the bag, that is every ball has an equal chance of bes included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 		1		hat ti	-
 6. In a box there are 4 granite stones, 5 sand stones and 6 bricks of identical size and shar Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bare drawn at random from the bag, that is every ball has an equal chance of berincluded in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 		· ·	an m i	natu	me
 Out of them 3 are chosen at random. Find the chance that : (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three baare drawn at random from the bag, that is every ball has an equal chance of beincluded in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 				and	ahana
 (i) They all belong to different varieties. (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bas are drawn at random from the bag, that is every ball has an equal chance of best included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 		-			snape.
 (ii) They all belong to the same variety. (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three bas are drawn at random from the bag, that is every ball has an equal chance of best included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 (ii) They are all granite stones. 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three baare drawn at random from the bag, that is every ball has an equal chance of beincluded in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 7. (a) A bag contains 10 balls, two of which are red, three blue and five black. Three baare drawn at random from the bag, that is every ball has an equal chance of beincluded in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 are drawn at random from the bag, that is every ball has an equal chance of beincluded in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 		• •	black	Thre	e balle
 included in the three. What is the probability that (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 (i) the three balls are of different colours, (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					oomg
 (ii) two balls are of the same colour, and (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 		1 V			
 (iii) the balls are all of the same colour? (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
 (b) A is one of six horses entered for a race and is to be ridden by one of the two jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins. 					
jockeys B and C. It is 2 to 1 that B rides A, in which case all the horses are equall likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins.	· · · ·		of the	two	
likely to win, with rider C, A's chance is trebled. (i) Find the probability that A wins.	. ,	•			uallv
(i) Find the probability that A wins.				1	- J
(II) What all oldes against A S willing?		What are odds against A's winning?			
() · · · · · · · · · · · · · · · · · ·					

- 8. (a) Three points are taken at random on the circumference of a circle. Find the chance that they lie on the same semi-circle.
 - (b) A chord is drawn at random in a given circle. What is the probability that it is greater than the side of an equilateral triangle inscribed in that circle?
 - (c) Show that the probability of choosing two points randomly from a line segment of length 2 inches and their being at a distance of at least 1 inch from each other is 1/4.
- 9. (a) A and B throw with one die for a stake of Rs. 44 which is to be won by the player who first throws a 6. If A has the first throw, what are their respective expectations?
 - (b) A contractor has to choose between two jobs. The first promises a profit of Rs.1,20,000 with a probability of ³/₄ or a loss of Rs. 30,000 due to delays with a probability of ¹/₄; the second promises a profit of Rs. 1,80,000 with a probability of ¹/₂ or a loss of Rs. 45,000 with a probability of ¹/₂. Which job should the contractor choose so as to maximise his expected profit?
 - (c) A random variable X can assume any positive integral value n with a probability proportional to 1/3ⁿ. Find the expectation of X.
- 10. X is normally distributed with $\sigma = 5$ and it is desired to test H₀: $\mu = 105$ against H₁ : $\sigma = 110$. How large a sample should be taken if the probability of accepting H₀ when H₁ is true is 0.02 and if a critical region of size 0.05 is used?
- 11. Let p be the probability that a given die shows an even number. To test H_0 : $p = \frac{1}{2}$ against H_1 : p = 1/3; the following procedure is adopted. Toss the die twice and accept H_0 if both times it shows even number. Find the probabilities of type I and type II errors.
- 12. (a) Obtain the statistic for testing the hypothesis that the mean of a Poisson population is 2 against the alternative that it is 3, on the basis of n independent observations.
 - (b) Suppose you are testing $H_0: \lambda = 2$ against $H_1: \lambda = 1$, where λ is the parameter of the Poisson distribution. Obtain the best critical region of the test.
- 13. (a) Discuss the concept of interval estimation and provide suitable Illustration.
 - (b) Critically examine how interval estimation differs from point estimation. Give the 95% confidence interval for the mean of the normal distribution, when its variance is known.

Instructions for all four practical

Tutor's Guide

• All the Questions can be solved by applying the concepts through the pen and paper mode. (Solving through computer is not necessary for these papers, but if students are interested then they can do on their own).

Guide to write the record notebook

- For all Questions write the algorithm (if any) of the method used, graphs (if any) in the right hand side page of the record notebook; solution of particular problem in the left hand side page of the record notebook.
- Write the objective of the problem first, then write the basic concepts involved in that problem, then write the algorithm used, as said in the previous point, finally write the solution as result.